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a b s t r a c t

The method of volume averaging is applied to estimate the Taylor–Aris dispersion tensor of solute
advected in columns consisting of ordered pillar arrays with wall retention of the type used in chro-
matographic separation. The appropriate closure equations are derived and solved in a unit cell with
periodic boundary conditions to obtain the dispersion tensor (or the reduced plate height) as a function
of the Peclet number (reduced velocity); pillar pattern, shape and size; partition coefficient; and resis-
tance to mass transfer. The contributions of the velocity profile, the wall adsorption, and the mass transfer
eywords:
ispersion
illar array
etention
olume average
late height
hromatography

resistance to the dispersion tensor are identified and delineated. The model is verified by comparing its
predictions and obtaining favorable agreement with results of direct numerical simulations and with
experimental data for columns containing ordered pillars. The model is then used to study the effect of
pillars’ shape and pattern on the longitudinal dispersion coefficient (plate height).

© 2009 Elsevier B.V. All rights reserved.
rdered column

. Introduction

Pressure-driven, liquid chromatography is a ubiquitous separa-
ion and purification technique. Most experimental investigations
ddress band broadening in packed bed columns [1]. In recent
ears, with advances in microfabrication techniques, there has been
growing interest in columns comprised of ordered pillars. The

se of ordered pillar arrays reduces variability from one column to
nother, improves data reproducibility, and reduces dispersion by
roviding uniform conditions along the flow path. Since microfab-
ication technology allows one to control the pillars’ shapes and
atterns, pillar-based columns are also amenable to optimization.

Below, we survey briefly the literature pertaining to separation
nd band broadening in columns comprising pillar arrays. Didier-
ean et al. [2] studied experimentally dispersion in non-retentive,
rdered and disordered circular pillar arrays and observed that
he flow patterns significantly affect the dispersion tensor. Various
esearchers [3,4,5] demonstrated experimentally that the longitu-
inal dispersion coefficients of ordered micropillar columns are

ignificantly smaller than those of equivalent packed beds. Eghbali
t al. [6] examined the contribution of the top and bottom surfaces
o dispersion in nonporous pillar arrays. De Pra et al. [7] evalu-
ted the permeability and separation performance of cylindrical

∗ Corresponding author. Tel.: +1 215 898 8363; fax: +1 215 573 6334.
E-mail address: bau@seas.upenn.edu (H.H. Bau).

021-9673/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2009.12.069
and diamond-shaped pillars. De Malsche et al. [8,9] produced partly
porous pillars and investigated dispersion under both nonretained
and retained conditions, observing reduced plate heights (plate
height/pillar diameter) as small as 0.9 even at relatively large reten-
tion factors. Recently, Illa et al. [10] obtained high performance,
pressure-driven separation in ordered pillar arrays fabricated with
an unmodified cyclo olefin polymer, which, due to its hydropho-
bicity, facilitated retention without a need for a separate stationary
phase. All the works surveyed above were experimental in nature.
Theoretical models are indispensable to guide designers of chro-
matographic columns and to improve understanding of columns’
performances.

Given the great importance of dispersion in diverse disci-
plines, it is not surprising that there is a large body of theoretical
works on estimating the dispersion tensor. Researchers have
employed direct numerical simulations [11,12]; perturbation
methods such as central-manifold [13,14] and multiscale expan-
sions; moment-based methods [15–18]; and volume-averaging
techniques [19–24]. Most of the theoretical studies focused on dis-
persion in porous columns without retention [16,17,20,21,23,24].
Just a few theoretical studies addressed retention in open columns
[13,14,15,18] and hardly any in packed beds. In particular, Golay

[14] examined the influence of a thin stationary phase on dispersion
in open tubes with circular cross-sections and in two-dimensional
conduits. Aris [15] considered concurrent flow of mobile and reten-
tive (not necessarily thin) phases in open channels of various
cross-sections. In his classical work, Giddings [13] accounted for

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:bau@seas.upenn.edu
dx.doi.org/10.1016/j.chroma.2009.12.069
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arious single-step reactions in the open chromatographic column
o better understand the role of complex, multi-step processes.
utta et al. [18] analyzed the dispersion in large aspect ratio
icroconduits of various cross-sections with thin retention lay-

rs and obtained an expression for the dispersion coefficient in
he form previously suggested by Giddings [13]. Notably, Dutta et
l. [18,25] pointed out that the longitudinal dispersion coefficient
an be reduced by judiciously sculpting the conduit’s cross-section.
ore-recently, Zhao and Bau [26] demonstrated that transverse

irculation in the conduit’s cross-section leads to a significant
eduction in the longitudinal dispersion coefficient.

Brenner [16] extended Aris’ method of moments to derive an
xpression for the dispersion tensor in a periodic porous medium
packed bed) without retention. With the aid of finite element sim-
lations, Edwards et al. [17] used Brenner’s model to calculate the

ongitudinal and lateral dispersion coefficients of two-dimensional
ow in a spatially periodic array of circular cylinders. Carbonell
nd Whitaker [20] developed a volume-averaging theory to esti-
ate the dispersion tensor in spatially periodic, porous media in

he absence of retention. Eidsath et al. [21] confirmed Carbonell
nd Whitaker’s theory by comparing their predictions with exper-
mental data. Plumb and Whitaker [22] extended Carbonell and

hitaker’s theory to account for porous particles that facilitate
ass transport through their pores. Using the volume-averaging
ethod, Amaral et al. [23] and Buyuktas and Wallender [24] cal-

ulated the dispersion tensor of two-dimensional ordered and
isordered cylinder arrays without retention as a function of array
attern and the Reynolds number.

Gzil et al. [11] solved directly two-dimensional advection-
iffusion equations accounting for retention to determine the plate
eight of pressure-driven chromatography in an ordered column
onsisting of cylindrical, porous pillars and demonstrated that
olumns comprised of ordered pillar arrays yield better separa-
ion than packed bed columns. In a subsequent paper, using direct
umerical simulations, De Smet et al. [12] demonstrated that a
onduit’s bottom and top walls contribute significantly to band
roadening. Although direct numerical simulations are a power-
ul tool to study the performance of chromatographic columns,
heir applicability is limited as three-dimensional simulations
re time-consuming and can be applied for only relatively short
olumns.

In this study, we extend the volume-averaging theory of Car-
onell and Whitaker [20] and derive a new expression for the
ispersion tensor accounting for both retention and interfacial
ass transfer (Section 2). We verify our theory by comparing

ts predictions with available theories for open columns (Sec-
ion 3.1) and with our own direct numerical simulations (Section
.2). Sections 4.1 and 4.2 compare our theoretical predictions
ith experimental data and with direct numerical simulations for

olumns comprised of pillar arrays. Sections 4.3 and 4.4 examine
he effects of pillar pattern and geometry on the dispersion tensor.
ection 4.5 analyzes our dispersion tensor in the framework of the
BC, Knox [27,28] equation. Section 5 concludes.

. Volume-averaged equations

In this section, we extend Carbonell and Whitaker’s [20] theory
o derive the dispersion tensor in a periodic medium with retention.
ig. 1 depicts a representative unit cell of characteristic dimensions
x and �y consisting of a solid phase coated with a thin reten-

ion layer and a mobile phase. The theory requires the following
ssumptions:

a) The characteristic dimensions of the column are much larger
than the characteristic dimensions of the unit cell and the char-
Fig. 1. Top view of a representative unit cell. The main flow is in the x-direction.
The z-coordinate points out of the page.

acteristic dimensions of the unit cell are much larger than those
of the pore (micro) structure.

b) The residence time of the mobile phase in the column is suffi-
ciently long for the deviation of the concentration distribution
from the average concentration to attain a quasi-steady state.

(c) The medium is homogeneous.

Although our main focus is ordered pillar arrays, our theory is
also applicable to random media.

The volume of the representative cell V is comprised of the vol-
ume of the mobile phase Vm, the volume of the stationary phase Vs

where retention takes place, and the volume of the solid particle
Vp.

V = Vm + Vs + Vp (1)

In the above, we use, respectively, the subscripts m, s, and p to
denote variables associated with the mobile, stationary, and solid
phases.

We consider pressure-driven flow of incompressible solvent
laden with analytes. The analytes are dilute, do not affect the sol-
vent’s properties, and do not interact. Consequently, we treat each
analyte as if it existed all by itself. The fluid motion is described with
the Navier–Stokes equation. The solvent obeys impermeability and
nonslip boundary conditions at the interface between the mobile
and stationary phases. There is no fluid flow in the stationary phase.

2.1. Volume averaging

The concentration of the analyte Cm(r, t) at position r and time
t in a column of length L (0 < x < L) satisfies the advection-diffusion
equation

∂Cm

∂t
+ v · ∇Cm = Dm∇2Cm (in Vm). (2)

In the above, all quantities are dimensional. Bold letters
represent vectors and light print letters represent scalars. The con-
centration of the analyte in the stationary phase Cs(r, t) satisfies the
diffusion equation
∂Cs

∂t
= Ds∇2Cs (in Vs), (3)

where Dm and Ds are, respectively, the uniform molecular diffusion
coefficients of the analyte in the mobile and stationary phases. The
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nlet concentration is Cinı̂(x)ı̂(t), where ı̂(x) and ı̂(t) are, respec-
ively, the Dirac delta functions. The initial conditions are Cm(r,
) = Cs(r, 0) = 0.

Mass conservation at the mobile phase-stationary phase inter-
ace (Ams) requires continuity of fluxes [15]:

Dsnms · ∇Cs = −Dmnms · ∇Cm = ı
∂Cs

∂t
= k(�Cm − Cs), (4)

here nms is a unit vector normal to the interface directed away
rom the mobile phase; ı is the thickness of the stationary phase,
hich is assumed to be thin; and k and � are, respectively, the mass

ransfer coefficient and the partition coefficient at the interface.
hen k → ∞,

s = �Cm (5)

nd the mobile and stationary phases are at local equilibrium at
he mobile phase-stationary phase interface (Ams). At the stationary
hase-solid particle interface (Asp),

snsp · ∇Cs = 0. (6)

To determine the velocity field, we solve the Navier–Stokes
quations in a unit cell with periodic boundary conditions at the
aces A–A′ and B–B′ (Fig. 1). To this end, the pressure in the axial
irection is decomposed into a linearly decreasing component and a
eviation from the linear behavior, i.e., p(x, y, z) = −Bx + p′(x, y, z),
here B plays the role of a body force.

Generally, due to the complex geometry, a direct numerical
olution of Eqs. (2)–(6) is impractical. To estimate the dispersion
ensor, we resort to volume averaging. We average Eqs. (2) and (3)
ver their respective domains and add up the resulting averaged
quations.

∂

∂t

(
〈Cm〉m+ Vs

Vm
〈Cs〉s

)
+∇ · 〈vCm〉m+ 1

Vm

∫
Ams

nms · (vCm)dA=Dm∇

·〈∇Cm〉m + Vs

Vm
Ds∇ · 〈∇Cs〉s + 1

Vm

∫
Ams

Dmnms · ∇CmdA + Vs

Vm

· 1
Vs

∫
Ams

Dsnsm · ∇CsdA (7)

In the above, the symbol 〈 〉 denotes an average over the domain
pecified in the superscript. For example, the volume-averaged
oncentration in the mobile phase (〈Cm〉m) and the area-average
oncentration at Ams (〈Cm〉Ams ) are, respectively,

Cm〉m = 1
Vm

∫
Vm

Cm dV and 〈Cm〉Ams = 1
Ams

∫
Ams

Cm dA. (8)

To obtain Eq. (7), we employed the spatial averaging theorem
20]

∇ · �〉 = ∇ · 〈�〉 + 1
V

∫
A

n · � dA (9)

o transform the volume average of the derivative of any tensor
to a derivative of the averaged quantity. A is the surface area

urrounding the volume V. Since there is no velocity component
ormal to the mobile–stationary phase interface, the area integral
n the left hand side of Eq. (7) vanishes. Also, the last two terms
n the right hand side of Eq. (7) cancel each other due to mass

onservation (Eq. (4)). Finally, neglecting diffusion in the stationary
hase, we reduce Eq. (7) to:

∂

∂t

(
〈Cm〉m + Vs

Vm
〈Cs〉s

)
+ ∇ · 〈vCm〉m = Dm∇ · 〈∇Cm〉m. (10)
1217 (2010) 1332–1342

Next, we define an average concentration for the entire unit cell

〈C〉ms = Vm〈Cm〉m + �Vs〈Cm〉Ams

Vm + �Vs
= 〈Cm〉m + k′′〈Cm〉Ams

1 + k′′ , (11)

where Vm + �Vs is the equivalent “mobile” volume and k′′ = �Vs
Vm

is the retention factor [12,27,28]. Next, we express the point con-
centration and velocity in terms of their average values and the
deviations from the average:

C(r, t) = 〈C(r, t)〉ms + C ′(r, t) (12)

and

v(r, t) = 〈v(r, t)〉m + v′(r, t). (13)

Consistent with the Taylor–Aris dispersion theory, we assume
that after a long time, C’(r,t) 	 〈C(r,t)〉ms. Consequently, the
area-averaged concentrations equal approximately the volume-
averaged concentrations, i.e., 〈Cm〉Ams ≈ 〈Cm〉m and 〈Cs〉Ams ≈ 〈Cs〉s,
and Eq. (11) yields 〈C〉ms = 〈Cm〉m. These approximations are dis-
cussed at length in Plumb and Whitaker [22] and will be verified
later in the paper through comparisons with direct numerical sim-
ulations.

Accordingly, we re-write Eq. (10) as

(
1 + k′′) ∂〈C〉ms

∂t
+ 〈v〉m · ∇〈C〉ms

= Dm∇ ·
{

∇〈C〉ms + 1
Vm

∫
Ams

nmsC ′ dA

}

−∇ · 〈v′C ′〉m − ∇ · 〈〈v〉mC ′〉m − k′′ ∂〈Cs/� − Cm〉Ams

∂t
. (14)

In the above, we set

∫
Ams

nms〈C〉ms dAms∼〈C〉ms

∫
Ams

nms dAms = 0.

The last term of Eq. (14) results from the departure from equilib-
rium at Ams. This term decreases as k increases.

Next, we derive the equation for the deviation C′(r, t). To this end,
we substitute Eq. (12) in Eq. (2) and subtract the volume-averaged
concentration (Eq. (14)) to obtain

v · ∇C ′ − Dm∇2C ′ − k′′ ∂〈C〉ms

∂t
+ (v − 〈v〉m) · ∇〈C〉ms = −∂C ′

∂t

− ∇ ·
(

1
Vm

∫
Ams

DmnmsC ′ dA

)
+ ∇ · 〈v′C ′〉m + ∇ · 〈〈v〉mC ′〉m

+ k′′ ∂〈Cs/� − Cm〉Ams

∂t
. (15)

According to the Taylor–Aris [15], Carbonell and Whitaker [20], and
Plumb and Whitaker [22] theories, at long times, the first four terms
on the RHS of Eq. (15) are all O

(
�
L

)
<< 1. Since we consider condi-

tions near equilibrium, we neglect the last term on the RHS of Eq.
(15). Consequently, Eq. (15) reduces to

v · ∇C ′ − Dm∇2C ′ = k′′ ∂〈C〉ms

∂t
− (v − 〈v〉m) · ∇〈C〉ms. (16)

Introducing the above approximation in Eq. (14) and neglecting
diffusion, we obtain

k′′ ∂〈C〉ms

∂t
≈ − k

′′

1 + k′′ 〈v〉m · ∇〈C〉ms. (17)

Substituting Eq. (17) in Eq. (16), we have

v · ∇C ′ − Dm∇2C ′ = −
(

v − 〈v〉m )
· ∇〈C〉ms. (18)
1 + k′′

Next, we derive the boundary condition for C′(r, t). The flux at
the mobile–stationary phases interface is:

J = −Dmnms · ∇Cm = −Dmnms · ∇〈C〉ms − Dmnms · ∇C ′ (19)
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components:
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From Eq. (4)

= ı
∂Cs

∂t
= �ı

(
∂Cm

∂t
+ ∂(Cs/� − Cm)

∂t

)

= �ı

(
∂〈C〉ms

∂t
+ ∂C ′

∂t
+ ∂(Cs/� − Cm)

∂t

)
. (20)

ince C′ 	 〈C〉ms, and we assume near equilibrium conditions at the
tationary phase–mobile phase interface. Eq. (20) reduces to

= �ı
∂〈C〉ms

∂t
. (21)

With the aid of Eq. (17), the boundary condition for C′ becomes

mnms · ∇C ′ =
(

−Dmnms + �ı
〈v〉m

1 + k′′

)
· ∇〈C〉ms. (22)

Finally, consistent with the definition of C′, the volume average
f C′ in the volume Vm + �Vs is zero.

Vm

C ′ dV + �ı

∫
Ams

C ′ dA = 0. (23)

.2. The closure problem

Eqs. (18), (22), and (23) constitute a linear boundary value prob-
em for C′(r, t) with forcing (source) terms proportional to ∇〈C〉ms.
ccordingly, one seeks a solution of the form

′ = f · ∇〈C〉ms, (24)

here f(r) is a vector function of position in the unit cell. Sub-
tituting Eq. (24) in Eqs. (18), (22), and (23), we obtain the linear
oundary value problem for f(r):

· ∇f − Dm∇2f = −
(

v − 〈v〉m

1 + k′′

)
(25-1)

ith the boundary condition

mn · ∇f =
(

−Dmn + �ı
〈v〉m

1 + k′′

)
, (25-2)

t the mobile–stationary phase interface; the periodic boundary
onditions

(x + �x, y, z) = f(x, y, z) (25-3)

t the A–A′ interfaces and

(x, y + �y, z) = f(x, y, z) (25-4)

t the B–B′ interfaces; and the normalization condition

Vm

f dV + �ı

∫
Ams

f dA = 0. (25-5)

Eqs. (25-1)–(25-4) allow us to determine f within an additive
onstant and Eq. (25-5) enforces uniqueness. Eqs. (25-1)–(25-5) can
e solved numerically to obtain the vector function f.

.3. The dispersion tensor

Our objective is to transform Eq. (14) into a diffusion-advection-
ike equation. To this end, we start with the last term on the RHS of
q. (14).

−k′′ ∂〈Cs/� − Cm〉Ams

∂t

= −k′′ 1
k�

∂
(
〈Dmnms · ∇〈C〉ms + Dmnms · ∇C ′〉Ams

)
∂t

m ∂
(∇〈C〉ms

)

= −k′′ 1

k�
�ı

〈v〉
1 + k′′ ·

∂t
217 (2010) 1332–1342 1335

= −k′′ 1
k�

�ı
〈v〉m

1 + k′′ · ∇
(

∂〈C〉ms

∂t

)

= (k′′)2

(1 + k′′)2

Vm

k�Ams
〈v〉m〈v〉m : ∇∇〈C〉ms. (26)

In the above, the first transformation utilized Eq. (4); the second,
Eq. (22); and the last, Eq. (17) and the spatial-invariance of the
volume-averaged velocity. The second and third terms on the RHS
of Eq. (14) can be written, respectively, as

−∇ · 〈v′C ′〉m = −〈v′f〉m : ∇∇〈C〉ms (27)

and

−∇ · 〈〈v〉mC ′〉m = −〈〈v〉mf〉m : ∇∇〈C〉ms

= �ı

Vm
〈v〉m

∫
Ams

f dA : ∇∇〈C〉ms, (28)

where the second transformation utilized Eq. (25-5).
Next, we re-write Eq. (14) in the form

(1 + k′′)
∂〈C〉ms

∂t
+ 〈v〉m · ∇〈C〉ms = D : ∇∇〈C〉ms, (29)

where the dispersion tensor

D = Dm

[
I + 1

Vm

∫
Ams

nmsf dA

]
− 〈v′f〉m

+ �ı

Vm
〈v〉m

∫
Ams

f dA + (k′′)2

(1 + k′′)2

Vm

k�Ams
〈v〉m〈v〉m. (30)

Using constraint Eq. (25-5), the dispersion tensor can be rewrit-
ten as

D = Dm

[
I + 1

Vm

∫
Ams

nmsf dA

]
− 〈vf〉m + (k′′)2

(1 + k′′)2

Vm

k�Ams
〈v〉m〈v〉m.

(31)

Only the symmetric components of the dispersion tensor con-
tribute to the transport process. We use Dxx and Dyy to denote,
respectively, the longitudinal and lateral dispersion coefficients.
The dispersion tensor (Eq. (30)) consists of five terms. The first term
represents molecular diffusion; the second term represents the
effect of the tortuosity of the array of pillars (this term is absent in
open conduits); the third term is due to hydrodynamic dispersion;
the fourth term represents the effect of retention; and the fifth term
represents the effect of mass transfer resistance. In the absence of
a retentive layer (k′′ = � = 0, k → ∞), Eq. (30) reduces to the well-

known result D = Dm

[
I + 1

Vm

∫
Ams

nmsf dA

]
− 〈v′f〉m [16,20,23,24].

When the velocity is uniform, the hydrodynamic dispersion term
disappears. When the column is open, Eq. (30) reduces to the
expression given by Aris [15] for a thin, non-diffusive stationary
phase.

2.4. Decomposition of the dispersion tensor into flow-field and
retentive contributions

Eq. (30) represents the contributions of the non-uniform veloc-
ity profile and the retention to the dispersion. To gain a better
appreciation of the effects of the velocity and retention on dis-
f = f0 + k

1 + k′′ f1. (32)
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here f0 is the solution of the boundary value problem

· ∇f0 − Dm∇2f0 = −(v − 〈v〉m), (33-1)

Dmn · ∇f0 = Dmn, (33-2)

0(x + �x, y, z) = f0(x, y, z), (33-3)

0(x, y + �y, z) = f0(x, y, z), (33-4)

nd

Vm

f0 dV = −�ı

∫
Ams

f0 dA. (33-5)

1 is the solution of the boundary value problem

· ∇f1 − Dm∇2f1 = −〈v〉m, (34-1)

Dmn · ∇f1 = − Vm

Ams
〈v〉m, (34-2)

1(x + �x, y, z) = f1(x, y, z), (34-3)

1(x, y + �y, z) = f1(x, y, z), (34-4)

nd

Vm

f1 dV = −�ı

∫
Ams

f1 dA. (34-5)

We will see shortly that the normalization conditions (33-5) and
34-5) can be relaxed since the dispersion tensor will be recast into
form that is invariant to the transformation f → f + B, where B is

ny constant vector.
Similar to the treatment of dispersion in an open channel [18],

e re-write the dispersion tensor (Eq. (30)) in the form:

= DmI + Dm

[
g�0 + k′′

1 + k′′ g�1

]

+
[
gc0 + k′′

1 + k′′ gc1 +
(

k′′

1 + k′′

)2

gc2

]

+ (k′′)2

(1 + k′′)2

Vm

k�Ams
〈v〉m〈v〉m, (35)

here

�0 = 1
Vm

∫
Ams

nmsf0 dA, (35-1)

�1 = 1
Vm

∫
Ams

nmsf1 dA, (35-2)

c0 = − 1
Vm

∫
Vm

(v − 〈v〉m)f0 dV, (35-3)

c1 = − 1
Vm

∫
Vm

(v − 〈v〉m)f1 dV + 〈v〉m

×
(

− 1
Vm

∫
Vm

f0 dV + 1
Ams

∫
Ams

f0 dA

)
, (35-4)

nd

c2 = 〈v〉m

(
− 1

Vm

∫
Vm

f1 dV + 1
Ams

∫
Ams

f1 dA

)
. (35-5)

itness that when the vectors fi are replaced with any constant

ector, all the integrals that include fi in the integrand vanish.
hus, expression (35) remains unchanged when one adds a con-
tant vector to fi. This implies that the normalization conditions
33-5) and (34-5) are irrelevant. It is convenient to, respectively,
eplace equations (33-5) and (34-5) with equations such as 〈f0〉m = 0
1217 (2010) 1332–1342

and 〈f1〉m = 0. Another consequence of the above invariance is that
the various tensors gii are independent of the retention process.
Thus expression (35) allows us to assess how each process affects
the dispersion tensor D. The tensors g�0 and g�1 are associated with
the medium’s tortuosity. The tensor gc0 represents the contribution
of the non-uniform velocity to the dispersion tensor. This contribu-
tion vanishes when the velocity profile is uniform. The terms g�1,
gc1, and gc2 correspond to the retention’s contribution to disper-
sion. In the presence of retention, the velocity field contributes to
dispersion even when the velocity profile is uniform. The last term
in Eq. (35) is due to the resistance to mass transfer.

2.5. Computational algorithm

Once we have defined the unit cell (i.e., Fig. 1), we solve the
Navier–Stokes equations with periodic boundary conditions to
obtain the flow-field. Then we solve Eqs. (25-1)–(25-5) to obtain
the vector function f. Once f has been determined, we compute the
dispersion tensor with Eq. (31). All the computations were carried
out with the multi-physics, finite element program ComsolTM.

3. Model verification

To verify the theoretical model, we compared the theoretical
predictions with prior theoretical and experimental works for open
conduits and with direct numerical simulations of a pillar array.

3.1. Open column

Assuming uniform concentration in the stationary phase at any
axial location and neglecting diffusion in the stationary phase,
Golay [14] derived the expression

Dxx

Dm
= 1 + Pe2

[
1

210
+ 1

30
k′′

1 + k′′ + 1
12

(
k′′

1 + k′′

)2
]

(36)

for longitudinal dispersion in flow between two parallel plates
coated with thin retention layers. In the above, the Peclet num-
ber Pe = 〈vx〉md/Dm is based on the distance d between the parallel
plates. Since in this case, the function f is one-dimensional, the clo-
sure problem (Eqs. (25-1)–(25-5)) can be solved in closed form to
yield expression (36). To verify our numerical code, we defined a
unit cell of length �x/d = 1 and solved Eqs. (25-1)–(25-5) numerically
to obtain a nearly perfect agreement (with less than 1% deviation)
between our numerical results and Golay’s theory (Eq. (36)).

3.2. Pillar array – comparison with direct numerical simulations
(DNS)

Next, we solved directly the two-dimensional, time-
independent momentum equation and the time-dependent
advection-diffusion Eq. (2) with equilibrium boundary conditions
at the surfaces of the retentive pillars (Eqs. (4) and (5)) and
non-retentive boundary conditions at the conduit’s surfaces. The
computational domain consists of a conduit of length L and width
W containing a single row of N (=120) pillars with pitch � = W
(Fig. 2a). The momentum equation was solved using periodic
boundary conditions p(x, y) = −Bx + p′(x, y), p′(x + �, y) = p′(x, y),
v(x + �, y) = v(x, y), where B’s magnitude was adjusted to yield the
desired Peclet number. The concentration field satisfied the initial
conditions {

C(x, y, 0) = 1 0 < x < �

0 otherwise
(37)

and the periodic condition

C(0, y, t) = C(L, y, t). (38)
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Fig. 2. (a) The computational domain. (b) The cross-section average concentration
as a function of the dimensionless time t* at nL when the retention factor k′′ = 0
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find that the volume-averaging technique provides excellent esti-
mates of the longitudinal dispersion coefficient even at relatively
small values of X. Our results are consistent with reports that in
open conduits the longitudinal dispersion differs by less than 10%
from its asymptotic value once X > 0.2 [18].
hollow circular), 0.1 (×), and 1 (solid circles). The lines and symbols correspond,
espectively, to the predictions of the one-dimensional, dispersion model and direct
umerical simulations. Pe = 17.8 and k = ∞.

Although the length of the computational domain is L, we obtain
he concentration distribution in longer columns through the use of
he periodic boundary conditions. The convergence of the compu-
ational results was verified through consecutive grid refinements.

To obtain the dispersion tensor (Eq. (30)), we calculated the
ector function f (Eqs. (25-1)–(25-5)) in the unit cell framed
ith a dashed line in Fig. 2a. Fig. 2b depicts the cross-sectional

verage concentration 〈C2D(nL, t∗)〉 = 1
W

W∫
0

C(nL, y, t∗) dy (symbols)

alculated with the direct numerical simulation and the one-
imensional approximation C1D(nL, t*) (solid line) calculated with
he dispersion model as functions of the dimensionless time t∗ =

Dmt
d2

p
when the retention factor k′′ = 0, 0.1 and 1 and the Peclet num-

er Pe = 〈vx〉mdp
Dm

= 17.8. Witness the excellent agreement between
he predictions of the one-dimensional dispersion model and the
irect numerical simulations. As the retention factor increased, the
igration velocity of the solute band decreased. The velocity of the

olute band’s peak is 〈vx〉m
k′′=0/(1 + k′′), where 〈vx〉m

k′′=0 is the peak’s
elocity in the absence of retention.

To determine the range of validity of the one-dimensional,
ispersion model, Fig. 3 depicts the relative difference between
he cross-section average concentrations predicted by the
wo-dimensional, direct numerical simulations and the one-
imensional model

C(X) =
∫ ∞

0

∣∣〈C2D(X, t∗)〉 − C1D(X, t∗)
∣∣ dt∗∫ ∞

0
〈C2D(X, t∗)〉 dt∗ (39)

s a function of the dimensionless, axial position along the column.
n the above, X = xDm . The discrepancy between the one and
〈vx〉md2

p

wo-dimensional models is smaller than 3% when X > 20 (or t* > 20).
Next, we use the results of the 2D simulations to estimate the

ongitudinal dispersion coefficient (Dxx). To this end, we calculated
Fig. 3. The relative difference between the concentration peaks predicted with the
two-dimensional, direct numerical simulations and the one-dimensional, dispersion
model as a function of the dimensionless distance from the conduit’s inlet. Pe = 17.8,
k′′ = 0, and k = ∞.

the first moment

tR(x) =
∫ t∞

0

∫ W

0
tC(x, y, t) dydt∫ t∞

0

∫ W

0
C(x, y, t) dydt

, (40-1)

and the variance

�2(x) =
∫ t∞

0

∫ W

0
t2C(x, y, t) dydt∫ t∞

0

∫ W

0
C(x, y, t) dydt

− t2
R (x) , (40-2)

as functions of x. In the above, t∞ is sufficiently large to allow the
concentration to return to zero at position x. The longitudinal dis-
persion coefficient [11]

DDNS
xx (xj) = 1

2
�2(xj) − �2(xj−1)

t2
R(xj) − t2

R(xj−1)
〈vx〉m(xj − xj−1), (40-3)

where xj and xj−1 are two adjacent positions along the x-axis. Fig. 4
depicts the ratio between the dispersion coefficient estimated with
Eq. (40-3) and the one (Dxx) calculated using the unit cell model (Eq.
(30)) as a function of X. Consistent with other workers [1,18], we
Fig. 4. The ratio of the dispersion coefficient estimated using direct numerical
simulations and the dispersion coefficient predicted with the volume-averaging
technique.



1338 X. Yan et al. / J. Chromatogr. A 1217 (2010) 1332–1342

F
a
i

4

4
e

s
v
w
h
t
b
p
(
r
t
p
f

C
o
r
c
o
r
h
c
d

c
t
t
d
b
u

s
i
d
a
a
r
s
l
T
b
e
t

Fig. 6. The longitudinal dispersion coefficient normalized with the molecular

ried out with the coumarin dyes C440, C460, and C480 suspended
in methanol-water mixtures.

Fig. 7 depicts the experimentally measured (solid symbols),
predicted with 3D simulations (lines with hollow symbols) and pre-
dicted with 2D simulations (dashed line) longitudinal dispersion
ig. 5. A representative periodic, unit cell of the pillar array used in De Malsche et
l.’s [8] experiments. The pillars are shown in gray. The geometry repeats itself both
n the x and y directions.

. Results and discussion

.1. Comparison between theoretical predictions and
xperimental data

De Malsche et al. [8] fabricated chromatographic columns con-
isting of 10 �m diameter, 19 �m tall pillars positioned at the
ertexes of an equilateral, triangular grid. The conduit’s width (W)
as several hundreds of microns, and the pillars spanned the entire
eight of the conduit. Fig. 5 depicts a representative unit cell of
he array’s geometry (�x/�y =

√
3). The experimenters fabricated

oth smooth-surface pillars and pillars coated with a 550 nm thick
orous layer (estimated porosity εint = 0.73). The external porosity
volume fraction of the mobile phase) is 0.4. In the experiments, the
atio of the average velocities of passive tracers too large to enter
he pores (〈vx〉m

k′′=0) and passive tracers small enough to enter the
ores (〈vx〉m

k′′=0/(1 + k′′)) was 1.25 ± 0.03. Accordingly, the retention
actor of the porous layer is estimated as k′′ = 0.25.

De Malsche et al. [8] measured band broadening of coumarin
480 suspended in methanol (Dm = 8.6 × 10−10 m2/s). They
bserved that the side walls caused “bending” of the bands and
eported only on the evolution of the portion of the band located
lose to the conduit’s center, minimizing the effect of the side walls
n the reported experimental data. As is common in chromatog-
aphy, the experimenters summarized their data in terms of plate
eights. To compare our theory with the experimental data, we
onverted the reported, reduced plate height (h) to the longitudinal
ispersion coefficient using the formula Dxx/Dm = h Pe/2.

We computed the dispersion tensor using both 2D and 3D unit
ells with periodic boundary conditions in both the x and y direc-
ions and neglected the effects of the side walls on dispersion as
he latter was excluded from the experimental data. The three-
imensional computations accounted for the effects of the top and
ottom surfaces on dispersion. Fig. 5 depicts the top view of the
nit cell.

Fig. 6 compares our 2D (dashed line) and 3D (lines with hollow
ymbols) theoretical predictions with De Malsche et al.’s [8] exper-
mental data (solid symbols). The figure depicts the longitudinal
ispersion coefficient normalized with the molecular diffusivity as
function of the Peclet number. The squares and downright tri-

ngles correspond, respectively, to a column with an estimated
etention factor of k′′ = 0.25 (porous pillars) and a column without a
tationary phase (k′′ = 0, smooth pillars). We assume that the porous
ayer does not present resistance to mass transfer and Sh → ∞.

he Sherwood number Sh = kdp

Dm
. Witness the excellent agreement

etween the predictions of the three-dimensional theory and the
xperimental data both in the absence and the presence of a reten-
ive layer. Not surprisingly, due to the effect of the top and bottom
diffusivity as a function of the Peclet number. The solid symbols correspond
to experimental data [8]. The lines with hollow symbols correspond to our
three-dimensional, theoretical predictions. The dotted line corresponds to our two-
dimensional, theoretical predictions. Sh = ∞.

surfaces, the dispersion coefficient in the three-dimensional case is
significantly larger than in the two-dimensional case. We will show
later that the three-dimensional dispersion coefficient can be sig-
nificantly reduced by appropriate sculpting of the pillar analogous
to Dutta’s proposal [18,25] for the open column with a rectan-
gular cross-section. The dash-dot lines in the figure correspond
to three-dimensional theoretical predictions with retention factor
k′′ = 0.25 ± 0.03. The region between the two dash-dot lines corre-
sponds to the uncertainty in the values of the retention factor as
reported by De Malsche et al. [8].

In a second set of experiments, De Malsche et al. [5] used 4.3 �m
diameter, 11.5 �m tall, smooth pillars, with a mobile phase volume
fraction of 0.55 patterned in a 1 mm wide conduit. The distances
between the pillars closest to the side walls and the side walls were
adjusted to minimize side-wall induced dispersion. The pillars were
covalently coated with a monolayer of hydrophobic C8-chains with
a thickness of about 1% of a pillar’s diameter. Experiments were car-
Fig. 7. The longitudinal dispersion coefficient normalized with the molecular
diffusivity as a function of the Peclet number. The solid symbols correspond
to experimental data [5]. The lines with hollow symbols correspond to our
three-dimensional, theoretical predictions. The dotted line corresponds to two-
dimensional, theoretical predictions.
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oefficients as functions of the Peclet number. The upright tri-
ngles, circles, and squares correspond, respectively, to the cases
ith retention factors k′′ = 0 (C440), 0.65 (C460), and 1.19 (C480)

s reported in De Malsche et al. [5]. The band width was measured
t the center of the conduit to exclude the effects of the side walls.
onsistent with the experimental data, our computations did not
ccount for the effects of the side walls. In the absence of retention
k′′ = 0), the theoretical predictions are in excellent agreement with
he experimental data. When k′′ > 0 and Sh = ∞, the theory under-
redicts (by about a factor of 1.8) the experimentally observed
ispersion. We suspect that this discrepancy is caused because
he simulations did not account for the resistance to mass trans-
er at the mobile phase-stationary phase interface. To check this
ypothesis, we repeated the calculations including resistance to
ass transfer. The mass transfer coefficient k was determined by

olving an inverse problem in which we minimized the discrepancy
etween predictions and experimental data. We estimated k = ∞
Sh = ∞), 7.2 × 10−5 m/s (Sh = 0.26), and 5.7 × 10−5 m/s (Sh = 0.21)
or C440, C460, and C480, respectively. These values are consis-
ent with experimentally measured mass transfer coefficients for
18-chains [29]. When we accounted for the resistance to mass
ransfer, the predictions were in excellent agreement with exper-
mental observations. The calculations of Fig. 7 indicate that mass
ransfer resistance at the mobile phase–stationary phase interface
lays a significant role in the longitudinal dispersion process.

.2. Comparison of theoretical predictions with direct numerical
imulations (DNS)

De Smet et al. [12] carried out 3D, direct numerical simula-
ions with computational fluid dynamics software (FLUENT v.6.1)
or both the nonporous, non-retentive pillar array and the porous,
etentive pillar arrays. In the simulations, they specified pillar diam-
ter dp = 5 �m, and pillar heights hp = 5, 10 and 12 �m. In all cases,
he volume fraction of the mobile phase was 0.4. A sufficiently long
omputational domain was specified to allow one to reach nearly
symptotic plate height value. Fig. 8 depicts the normalized, lon-
itudinal dispersion coefficient as a function of the Peclet number.
he symbols correspond to De Smet et al.’s [12] direct numerical
imulation data, and the lines correspond to our model’s predic-
ions. The model’s predictions are in excellent agreement with the
esults of the direct numerical simulations.
.3. The effect of array geometry on column performance

Since our model imposes minimal demands on computational
esources, it can be conveniently used for parametric studies and

ig. 9. The normalized longitudinal and lateral dispersion coefficients are depicted (a) as
or various Peclet numbers. k′′ = 0.
Fig. 8. The longitudinal dispersion coefficient (normalized with the molecular diffu-
sivity) as a function of the Peclet number. The symbols correspond to De Smet et al.’s
[12] direct numerical simulations. The lines correspond to our dispersion model’s
predictions. k′′ = 0.

for optimization. For example, in chromatography, it is desirable to
minimize the longitudinal dispersion coefficient and band broad-
ening while in chemical reactors the opposite may be true. In this
section, we examine briefly the effect of array pattern on the dis-
persion tensor.

We consider a two-dimensional pillar array with the pattern
depicted in Fig. 5 (mobile phase volume fraction of 0.5). First, we
examine the effect of the ratio �x/�y on the dispersion coefficient.
Fig. 9a depicts the diagonal components of the dispersion tensor
as functions of the Peclet number for several �x/�y ratios in the
absence of retention (k′′ = 0). As anticipated the dispersion coeffi-
cients increase as the Peclet number increases. The rate of increase,
however, varies as a function of the aspect ratio �x/�y. In other
words, the various curves intersect a few times. This indicates that
the optimal geometry depends on the magnitude of the Peclet num-
ber. When Pe > 100, Dxx and Dyy are, respectively, proportional to
Pea and Peb, where both a and b are functions of lx/ly, 1.7 < a < 2 and
0.1 < b < 0.2.

Fig. 9b depicts the normalized longitudinal and lateral disper-
sion coefficient as functions of the ratio �x/�y when Pe = 10, 50, and

100 and k′′ = 0. The figure illustrates the existence of a minimum
longitudinal (Dxx) dispersion coefficient. In the range of parameters
considered here, the pattern �x/�y at which the minimum longitudi-
nal dispersion coefficient occurs depends weakly on the Pe number.
When Pe < 100, it appears reasonable to select �x/�y ∼ 1.4. When

functions of the Peclet number for various �x/�y ratios and (b) as functions of �x/�y



1340 X. Yan et al. / J. Chromatogr. A 1217 (2010) 1332–1342

F
o

t
t
c
c

o
n
a

4

g
t
e
a

p
c
i
a
b
e
(
i
t
k
w
a
a
m
s
t
t
d
v
w
b
a
m

4

h

t
l
〈
E
(

Fig. 11. The normalized, longitudinal dispersion coefficients of pillar arrays with-

triangles, squares, and circles correspond, respectively, to the stag-
gered array [8] (�x/�y = 1.73, case I), the staggered array with an
optimal pattern (�x/�y = 1.4, case II), and the staggered array with
undercut pillars (Fig. 10, �x/�y = 1.4, case III). Solid lines are best
fit curves generated with Eq. (41). Witness that Eq. (41) provides a

Fig. 12. The reduced plate height in the absence (k′′ = 0, hollow symbols) and pres-
ig. 10. (a) Three-dimensional image of pillars with undercuts. (b) The cross-section
f a pillar with the undercuts.

he Peclet number is relatively small (i.e., Pe = 10), the ratio �x/�y

hat minimizes the longitudinal dispersion coefficient (Dxx) nearly
oincides with the ratio �x/�y that maximizes the lateral dispersion
oefficient (Dyy).

We have demonstrated in this section that by judicious selection
f array pattern, it is possible to significantly reduce the longitudi-
al dispersion coefficient. Clearly, optimization of the pillars’ shape
nd pattern is profitable.

.4. Reducing the adverse impact of the top and bottom surfaces

Figs. 6–8 demonstrate a large difference between the lon-
itudinal dispersion coefficients predicted by the two and
hree-dimensional models. This difference results from the pres-
nce of a floor and a ceiling in the 3D case, which retard the flow
nd significantly increase dispersion.

Dutta et al. [18,25] have showed that the longitudinal dis-
ersion coefficient in open columns with nominally rectangular
ross-sections can be significantly reduced by appropriate sculpt-
ng of the conduit’s cross-section to increase the cross-sectional
rea available to the flow next to the side walls. Similar gains can
e achieved with appropriate modifications of the pillars’ geom-
try. Fig. 10 depicts the shape of a modified pillar with undercut
smaller diameter) regions next to the channel’s floor and the ceil-
ng to increase the flow velocity in these regions. We examine how
he undercut affects the longitudinal dispersion coefficient while
eeping the cross-sectional area available to the flow fixed. In other
ords, we keep Hdp − 4ab and the flow rate fixed while varying dp,

, and b. Fig. 11 depicts the longitudinal dispersion coefficient as
function of the pillar’s diameter–height ratio (dp/H) with opti-
al undercuts (hollow circles and dashed line) and without (solid

quares and solid line) undercuts. The dashed-dot line corresponds
o the two-dimensional case (no floor and ceiling) and provides
he lowest possible longitudinal dispersion coefficient at any given
p/H. The Peclet numbers of the various cases considered in Fig. 11
aried slightly due to the variations in dp. The figure illustrates that
ith appropriate modifications in the pillar’s geometry, it is possi-

le to reduce the longitudinal dispersion coefficient by as much as
factor of 5. Additional gains are likely with more rigorous opti-
ization.

.5. Implications for Knox ABC equation

Chromatographers often employ the Knox [28] ABC equation,

= A · Pen + B/Pe + C · Pe, (41)
o estimate the reduced (dimensionless) plate height (h) or the
ongitudinal dispersion coefficient Dxx = (hDm/2)Pe, where Pe =
vx〉mdp/Dm is often referred to as the reduced velocity [27,28]. In
q. (41), the plate height is normalized with the pillar diameter
dp) in the case of a pillar array and with the bead diameter (dp)
out (solid line) and with (dashed line) optimal undercuts as functions of the ratio
between pillar diameter and height. The magnitude of the undercut was adjusted to
preserve the cross-sectional area available to the flow. The horizontal, dashed-dot
line corresponds to a two-dimensional case. k′′ = 0.

in the case of a packed bed. Classically, the A, B, and C terms rep-
resent, respectively, the flow anisotropy; molecular, longitudinal
diffusion; and mass transport; and they are determined empiri-
cally. In what follows, we will first determine the coefficients A, B,
and C by fitting Eq. (41) with our dispersion theory’s predictions
and then we recast Eq. (35) in the form of the Knox equation.

4.5.1. Determination of A, B, and C by curve fitting
We determined A, B, and C by fitting Eq. (41) to our computed

data (with n = 1/3). Fig. 12 depicts the normalized plate height of
the various pillar arrays considered in the previous subsections as
a function of the Peclet number in the absence (k′′ = 0, hollow sym-
bols) and presence (k′′ = 1, solid symbols) of a retention layer. In all
cases, the volume fraction of the mobile phase is 0.4. The upright
ence (k′′ = 1, solid symbols) of a retention layer. The upright triangles, squares,
and circles correspond, respectively, to the computational results for the staggered
array (�x/�y = 1.73, case I, [8]), the staggered array with an optimal pillar pattern
(�x/�y = 1.4, case II), and the staggered array with the undercut pillars (Fig. 10,
�x/�y = 1.4, case III). The solid lines are best fit curves generated with Eq. (41). The
porosity is 0.4, and the interfacial mass transfer coefficient k → ∞.
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Table 1
The values of the constants A, B, and C, the optimal Pe number, and the minimal plate
height.

Retention Geometry A B C Peopt hmin

k′′ = 0 �x/�y = 1.732, case I 0.0232 1.3608 0.0027 19 0.185
�x/�y = 1.4, case II 0.0091 1.2819 0.0038 18 0.164
�x/�y = 1.4, case III 0.0083 1.3112 0.0030 20 0.147
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Fig. 13. The coefficients A, B, and C predicted by our dispersion theory for the stag-
k′′ = 1 �x/�y = 1.732, case I 0.0257 1.3498 0.0146 9.0 0.335
�x/�y = 1.4, case II 0.0127 1.2794 0.0157 8.6 0.301
�x/�y = 1.4, case III 0.0119 1.3090 0.0125 9.9 0.282

ood fit to our theoretical data. The corresponding A, B, and C values
or each case are documented in Table 1. Table 1 also lists the min-
mal, normalized plate height for each case and the Peclet number
t which the minimum is attained.

The A value associated with the optimal geometry (case III) is
ignificantly smaller than the other A values, which is consistent
ith the notion that A is mostly affected by processes taking place

n the mobile phase. The A values in the absence of retention (k′′ = 0)
re, however, smaller than in the presence of retention (k′′ = 1),
ndicating that A is not completely free of retention effects.

The C values in the absence of retention (k′′ = 0) are signifi-
antly smaller than in the presence of retention (k′′ = 1) and are not
ffected much by the pillar’s pattern and geometry. The B values do
ot appear to vary much among the various cases.

.5.2. Determination of A, B, and C by recasting the dispersion
quation

Next, we attempt to recast Eq. (35) in the form of Eq. (41). We
btain the following expressions for A, B, and C.

A = 2g2D
c0

DmPen+1
, B = 2

(
1 + g3D

	0 + k′′

1 + k′′ g3D
	1

)
,

= Cheight + Cinterface + Cstationary-diffusion + Cretention,

Cheight = 2(g3D
c0 − g2D

c0 )

DmPe2
, Cinterface =

(
k′′

1 + k′′

)2 2VmDm

k�Amsd2
p

,

Cstationary−diffusion = 0,

and Cretention = k′′

1 + k′′
2g3D

c1

DmPe2
+

(
k′′

1 + k′′

)2 2g3D
c2

DmPe2
. (42)

In the above, g is the longitudinal component of the tensor g (Eqs.
35)) and the coefficients A, B, and C are, generally, functions of both
he geometry and the Peclet number. The terms g2D

c0 and g3D
c0 denote,

espectively, the values calculated for two-dimensional (without
floor and a ceiling) and three-dimensional pillar array columns.
he terms Cheight, Cinterface, Cstationary-diffusion, and Cretention repre-
ent, respectively, the contributions to the dispersion of the floor
nd ceiling, the mobile–stationary phase interfacial mass transfer
esistance, the diffusion in the stationary phase, and the retention.
n our work, the stationary phase is assumed to be thin, and the
iffusion in the stationary phase is neglected: Cstationary-diffusion ≈ 0.
arious researchers have proposed different values of the exponent
[23,24].

We used Eq. (41) to calculate A, B, and C. Fig. 13 depicts A, B, and
he various components of C as functions of the Peclet number for
ase I (�x/�y = 1.732, k′′ = 1, porosity 0.4, k → ∞, and n = 1/3). Similar
rends were observed for cases II and III, but are not reproduced
ere in the interest of space. Since we do not consider diffusion in

he stationary phase and k → ∞, Cstationary-diffusion = Cinterface = 0. In
he range of parameters considered In Fig. 13, B, Cheight, and Cretention
re nearly independent of the Peclet number. In contrast, when
e < 20, A varies with the Pe number. Our data correlates reasonably
ell with an expression in the form A Pen = A0 + A1 ln(Pe) + A2 Pe
gered array (�x/�y = 1.73, case I) are depicted as functions of the Peclet number. The
hollow circles correspond to a logarithmic approximation for A. The porosity is 0.4,
and the interfacial mass transfer coefficient k → ∞.

[30] (hollow circles in Fig. 13). The averages of the A, B, and C values
depicted in Fig. 13 are within 16% of the values reported in Table 1.
In other words, if one were to use a Knox-like equation with the
average values of A, B, and C based on Eq. (42), one would likely
incur an error on the order of 14% when estimating the dispersion
coefficient.

Various researchers have reported A values on the order of
one for packed bed columns. Our theoretical estimates of A for
columns comprised of ordered pillar arrays are much smaller in
magnitude. This is consistent with Knox’s argument that perfectly
ordered, internal structures improve the column’s performance.
Since the A-term of the perfectly ordered column is small, the
relative importance of the C term increases. See Figs. 7 and 12.
Indeed, experimenters [9] reported relatively large C values in
studies of columns consisting of ordered pillars coated with
porous shells. Hence, stationary phases with small mass transfer
resistance are critical for further optimization of the separation
performance.

5. Conclusions

Using the volume-averaging technique, we derived a new for-
mula to estimate the dispersion tensor in ordered pillar array
columns with a thin retentive layer. The model accounts for
both the retention and the resistance to mass transfer at the
mobile–stationary phase interface. The model requires numerical
computations over a domain consisting of a periodic unit cell. In
contrast to direct numerical simulations, these computations do
not heavily task computer resources and can be used for parametric
and optimization studies. The dispersion tensor was decomposed
into independent components identifying how geometry, velocity
profile, retention, and resistance to mass transfer affect dispersion.

The model was verified by comparing its predictions with other
models available in the literature, with results of direct numerical
simulations, and with experimental data. In all cases, our model
predictions were in good agreement with experimental data and
with the results of direct numerical simulations.

Detailed results were presented for columns consisting of

ordered pillar arrays. Such columns have advantages over columns
comprised of packed beds. The ordered columns provide a uniform
structure with a smaller longitudinal dispersion than in non-
homogeneous structures. Moreover, the ordered columns assure
consistency and reproducibility from one column to another,
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educing the variability of experimental data. Significantly, one can
ptimize the pattern of the array and the shape of the pillars to meet
esired objectives. Although in this study we did not carry out rig-
rous optimization, we did demonstrate that by judicious selection
f pillar pattern and shape one can reduce the longitudinal disper-
ion coefficient and minimize the adverse effects of the conduit’s
oor and ceiling. Obviously, much more can and should be done
long these lines.

Finally, we discussed our results in the context of Knox’s ABC
quation, which is often used by chromatographers. We provided
xplicit expressions for the coefficients A, B, and C. Our results indi-
ate that the value of A depends on the Peclet number while, for the
ases studied here, B and C can be regarded as nearly independent
f the Peclet number.
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